Assignment +2 Class

It's all about believing

Topic: - Differential equations

- 1. Verify that y = 3 cos (log x) + 4 sin (log x) is a solution of the D.E. $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$.
- 2. Form the D.E. of the following family of curves: $xy = A e^x + Be^{-x} + x^2$.
- 3. Obtain the D.E. from $y = e^x$ (a cos x + b sin x), where a and b are arbitrary constants.
- 4. Form D.E. corresponding to the equation $y = ae^{3x} + be^{-2x}$, where a and b are arbitrary constants
- 5. Form the D.E. of family of circles touching y -axis at origin.
- 6. Form the D.E. of the family of parabolas having vertex at origin and axis.
- 7. Form the D.E. representing the family of ellipse having foci on x-axis and centre at the origin.
- 8. Find the D.E. of all circles having centre on x-axis and passing through origin.
- 9. Find D.E. of all circles which pass through origin and whose centre lie on y axis.
- 10. Find D.E. of family of circles touching x-axis at origin.
- 11. Form the D.E. of the family of circles in the second quadrant and touching the coordinate axes.
- 12. Let f(x) be a solution of $\frac{2+\sin x}{1+y}\frac{dy}{dx} = -\cos x$. Also when x = 0, y = 1. Find y $\left(\frac{\pi}{2}\right)$.
- 13. A normal to a given curve at point (x, y) on the curve passes through point (2, 0). If the curve contains the point (2, 3), find its equation.
- 14. The slope of the tangent at a point P(x, y) on a curve is $-\frac{x}{y}$. If the curve passes through the point (3, -4), find the equation of the curve.
- 15. Solve the following initial value problems: $\frac{dy}{dx} = \cos(x + y 1)$, given that x = 0, y = 1.
- 16. Solve the following D.E. $\frac{dy}{dx} = (3x 2y + 1)^2$.
- 17. Solve the D.E. equation: $y dx + (2\sqrt{xy} x) dy = 0$.
- 18. Solve y dx + x $\left(\log \frac{y}{x}\right)$ dy 2x dy = 0.
- 19. Solve the following D.E. $(1 + x^2)$ dy + 2 x y dx = cot x dx; $x \ne 0$.
- **20. Solve (x² + 1)** $\frac{dy}{dx}$ + 2 x y = $\sqrt{x^2 + 4}$.
- 21. Find particular solution of following D.E. satisfying the given conditions: $\frac{dy}{dx}$ + 2y tan x = sin x; y = 0 when x = $\frac{\pi}{3}$.
- 22. Find general solution of the D.E. $\sqrt{1+x^2+y^2+x^2y^2}+xy\frac{dy}{dx}=0$.
- 23. Show that the differential equation xdy ydx = $\sqrt{x^2 + y^2}$ dx is homogeneous, and solve it.
- 24. Find the particular solution of the D.E. $\cos x \, dy = \sin x \, (\cos x 2y) \, dx$, given that y = 0 when $x = \frac{\pi}{3}$.
- 25. Find the particular solution of the D.E. $\frac{dy}{dx} = 1 + x = y + xy$, given that y = 0 when x = 1.
- **26. Solve the D.E.** $(1 + x)^2 \frac{dy}{dx} + y = e^{\tan^{-1} x}$
- 27. Find the particular solution of the D.E. $x(1 + y^2)dx y(1 + x^2)dy = 0$, given that y = 1 when x = 0.

Career Makers

Assignment +2 Class

It's all about believing

Topic: - Differential equations

28. Find the particular solution of the D.E. $\log \left(\frac{dy}{dx}\right) = 3x + 4y$, given that y = 0 when x = 0

Multiple Choice Question:-

29. If m and n are order and degree of $\left(\frac{d^2y}{dx^2}\right)^5 + 4 \cdot \frac{\left(\frac{d^2y}{dx^2}\right)}{\frac{d^3y}{dx^2}} = x^2 - 1$, then (a) m = 3, n = 2 (b) m = 3, n = 3

(c) m = 3, n = 5 (d) m = 3, n = 1.

- 30. The number of arbitrary constants in the general solution of a D.E. of fourth order is: (a) 0 (b) 2 (c) 3 (d) 4.
- 31. The degree and order of D.E. of family of all parabolas whose axis x axis are respectively: (a) 2, 3 (b) 2, 1 (c) 1, 2 (d) 3, 2.
- 32. The D.E. equation whose solution is $Ax^2 + By^2 = 1$, where A and B are arbitrary constants is of: (a) second order and second degree (b) first order and second degree (c) first order and first degree (d) second order and first degree.
- **33. Find the I.F for the following D.E** $x \log x \frac{dy}{dx} + y = 2 \log x$
- 34. Find the particular solutions of the D.E $x^2 dy = (2xy + y^2) dx$ given that y=1 when x=1
- 34. Find the particular solutions of the D.E $(1+x^2)\frac{dy}{dx} = (e^{m \tan^{-1}x} y)$ given that y=1 when x=0

2.
$$xy - x^2 + 2$$
 3. $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$ 4. $y_2 - y_1 - 6y = 0$. 5. $y_2 = x^2 + 2xy \frac{dy}{dx}$ 6. $x \frac{dy}{dx} = 2y$

$$7.x(y y_2 + y_1^2) - yy_1 = 0 \quad 8.y^2 = x^2 + 2xy \frac{dy}{dx} \quad 9.(x^2 - k^2) \left(\frac{dy}{dx}\right)^2 + x^2 = 0 \quad 10.(x^2 - k^2) \left(\frac{dy}{dx}\right)^2 + x^2 = 0$$

11.(x + y)² [1+(y')²] = [x + yy']² 12.
$$\frac{1}{3}$$
 13.x² + y² - 4x - 5 = 0 14.x² + y² = 25 15. tan $\left(\frac{x+y-1}{2}\right)$ = x

16.
$$\frac{1}{2\sqrt{6}}\log \left| \frac{\sqrt{3} + \sqrt{2}(3x - 2y + 1)}{\sqrt{3} - \sqrt{2}(3x - 2y + 1)} \right| = x + c$$
 17. A $y = e^{-\sqrt{\frac{x}{y}}}$, where A = \pm 18. $\log \frac{y}{x}$ - 1 = c y 19. Y (1 + x²) = $\log \frac{y}{x}$

$$|\sin x| + c = 20.y(x^2 + 1) = \frac{x\sqrt{x^2 + 4}}{2} + 2\log|x + \sqrt{x^2 + 4}| + c = 21.y = \cos x - 2\cos^2 x$$

$$22. \sqrt{1+x^2} + \frac{1}{2} \log \left| \frac{\sqrt{1+x^2} - 1}{\sqrt{1+x^2} + 1} \right| + \sqrt{1+y^2} = A$$

$$24. \cos x - 2 \cos^2 x$$

$$25. x + \frac{x^2}{2} - \frac{3}{2}$$

$$26. y = \frac{e^{\tan^{-1} x}}{2} + Ce^{-\tan^{-1} x}$$

27.
$$\sqrt{2x^2+1}$$
 28. 0 **29.d 30.d 31.c 32.d 33.logx**